随着物联网(IoT),边缘计算和云计算的普及,正在开发越来越多的流分析应用程序,包括在物联网传感数据之上的实时趋势预测和对象检测。一种流行的流分析类型是基于重复的神经网络(RNN)基于深度学习模型的时间序列或序列数据预测和预测。与假设数据提前可用并且不会更改的传统分析不同,流分析涉及正在连续生成的数据,并且数据趋势/分布可能会发生变化(又称概念漂移),这将导致预测/预测准确性下降时间。另一个挑战是为流分析找到最佳的资源提供,以达到良好的总体延迟。在本文中,我们研究了如何使用称为长期记忆(LSTM)的RNN模型来最佳利用边缘和云资源,以获得更好的准确性和流式分析。我们为混合流分析提出了一个新颖的边缘云集成框架,该框架支持云上边缘和高容量训练的低潜伏期推断。为了实现灵活的部署,我们研究了部署混合学习框架的不同方法,包括以边缘为中心,以云为中心和边缘云集成。此外,我们的混合学习框架可以根据历史数据进行预训练的LSTM模型,并根据最新数据定期重新训练LSTM模型的推理结果。使用现实世界和模拟流数据集,我们的实验表明,在延迟方面,提出的Edge-Cloud部署是所有三种部署类型中最好的。为了准确性,实验表明我们的动态学习方法在所有三种概念漂移方案的所有学习方法中都表现出最好的作用。
translated by 谷歌翻译
精益燃烧是环境友好的,NOX排放量低,并且在燃烧系统中还提供了更好的燃油效率。但是,接近瘦燃烧会使引擎更容易容易倾斜。精益井喷(LBO)是一种不希望的现象,可能会导致突然的火焰灭绝,从而导致突然失去权力。在设计阶段,对于科学家来说,准确确定最佳的操作限制以避免突然发生LBO的情况非常具有挑战性。因此,至关重要的是,在低NOX排放发动机中开发准确且可计算的框架来在线LBO检测。据我们所知,我们第一次提出了一种深度学习方法来检测燃烧系统中的精益井喷。在这项工作中,我们利用实验室规模的燃烧器收集不同协议的数据。对于每个协议,我们远离LBO,并逐渐朝LBO制度移动,在每个条件下捕获一个准静态时间序列数据集。使用数据集中的一个协议作为参考协议,并在域专家注释的条件下,我们找到了经过培训的深度学习模型的过渡状态指标,以在其他测试协议中检测LBO。我们发现,我们所提出的方法比其他基线模型更准确和计算更快,以检测到LBO的过渡。因此,我们建议使用瘦燃烧引擎中实时性能监视的方法。
translated by 谷歌翻译